Yoneda extensions of abelian quotient categories

نویسندگان

چکیده

Let A be a essentially small abelian category and C Serre subcategory of . Consider the quotient functor q : → / For an object ∈ non-negative integer k we investigate when natural map X , i Ext ( ) is invertible for every { 0 1 ⋯ } In end give application main theorem.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Yoneda Lemma for unital A ∞ - categories

Let C be the differential graded category of differential graded k-modules. We prove that the Yoneda A∞-functor Y : A op → A∞(A,C) is a full embedding for an arbitrary unital A∞-category A. Since A∞-algebras were introduced by Stasheff [Sta63, II] there existed a possibility to consider A∞-generalizations of categories. It did not happen until A∞-categories were encountered in studies of mirror...

متن کامل

Gorenstein projective objects in Abelian categories

Let $mathcal {A}$ be an abelian category with enough projective objects and $mathcal {X}$ be a full subcategory of $mathcal {A}$. We define Gorenstein projective objects with respect to $mathcal {X}$ and $mathcal{Y}_{mathcal{X}}$, respectively, where $mathcal{Y}_{mathcal{X}}$=${ Yin Ch(mathcal {A})| Y$ is acyclic and $Z_{n}Yinmathcal{X}}$. We point out that under certain hypotheses, these two G...

متن کامل

A∞-categories and the Yoneda lemma

Let C be the differential graded category of differential graded k-modules. We prove that the Yoneda A ∞ -functor Y : A → A ∞ (A,C) is a full embedding for an arbitrary unital A ∞ -category A. For a differential graded k-quiver B we define the free A ∞ -category FB generated by B. The main result is that the restriction A ∞ -functor A ∞ (FB,A) → A1(B,A) is an equivalence, where objects of the l...

متن کامل

On component extensions locally compact abelian groups

Let $pounds$ be the category of locally compact abelian groups and $A,Cin pounds$. In this paper, we define component extensions of $A$ by $C$ and show that the set of all component extensions of $A$ by $C$ forms a subgroup of $Ext(C,A)$ whenever $A$ is a connected group. We establish conditions under which the component extensions split and determine LCA groups which are component projective. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2023

ISSN: ['1090-266X', '0021-8693']

DOI: https://doi.org/10.1016/j.jalgebra.2022.10.033